in this course) ˆ Y =time to event, follow-up curtailed: covered under ˆ Missing at random (MAR) a

Size: px
Start display at page:

Download "in this course) ˆ Y =time to event, follow-up curtailed: covered under ˆ Missing at random (MAR) a"

Transcription

1 Chapter 3 Missing Data 3.1 Types of Missing Data ˆ Missing completely at random (MCAR) ˆ Missing at random (MAR) a ˆ Informative missing (non-ignorable non-response) See 1, 38, 59 for an introduction to missing data and imputation concepts. a Although missing at random (MAR) is a non-testable assumption, it has been pointed out in the literature that we can get very close to MAR if we include enough variables in the imputation models CHAPTER 3. MISSING DATA Prelude to Modeling ˆ Quantify extent of missing data ˆ Characterize types of subjects with missing data ˆ Find sets of variables missing on same subjects 3.3 Missing Values for Different Types of Response Variables ˆ Serial data with subjects dropping out (not covered in this course) ˆ Y =time to event, follow-up curtailed: covered under survival analysis b ˆ Often discard observations with completely missing Y but sometimes wasteful ˆ Characterize missings in Y before dropping obs. 3.4 Problems With Simple Alternatives to Imputation Deletion of records b White and Royston 131 provide a method for multiply imputing missing covariate values using censored survival time data.

2 CHAPTER 3. MISSING DATA 56 ˆ Badly biases parameter estimates when the probability of a case being incomplete is related to Y and not just X 82. ˆ Deletion because of a subset of X being missing always results in inefficient estimates ˆ Deletion of records with missing Y can result in biases 30 but is the preferred approach under MCAR c ˆ However von Hippel 126 found advantages to a use all variables to impute all variables then drop observations with missing Y approach ˆ Only discard obs. when MCAR can be justified Rarely missing predictor of overriding importance that can t be imputed from other data Fraction of obs. with missings small and n is large ˆ No advantage of deletionexceptsavings of analyst time ˆ Making up missing data better than throwing away real data c Multiple imputation of Y in that case does not improve the analysis and assumes the imputation model is correct. CHAPTER 3. MISSING DATA 57 Adding extra categories of categorical predictors ˆ Including missing data but adding a category missing causes serious biases 1, 71, 117 ˆ Problem acute when values missing because subject too sick ˆ Difficult to interpret ˆ Fails even under MCAR 1, 38, 71, 119 ˆ May be OK if values are missing because of not applicable, e.g. you have a measure of marital happiness, dichotomized as high or low, but your sample contains some unmarried people. OK to have a 3-category variable with values high, low, and unmarried. d Likewise, serious problems are caused bysetting missing continuous predictors to a constant (e.g., zero) and adding an indicator variable to try to estimate the effect of missing values. Two examples fron Donder et al. 38 using binary logistic regression, N = 500. d Paul Allison, IMPUTE list, 4Jul09

3 CHAPTER 3. MISSING DATA 58 Results of 1000 Simulations With β1 = 1.0 with MAR and Two Types of Imputation Imputation ˆβ1 S.E. Coverage of Method 0.90 C.I. Single Multiple Now consider a simulation with β1 = 1, β2 = 0, X2 correlated with X1(r = 0.75) but redundant in predicting Y, use missingness indicator when X1 is MCAR in0.4 of 500 subjects. This is also compared with grand mean fill-in imputation. Results of 1000 Simulations Adding a Third Predictor Indicating Missing for X1 Imputation ˆβ1 Method ˆβ2 Indicator Overall mean 0.55 CHAPTER 3. MISSING DATA Strategies for Developing Imputation Algorithms The goal of imputation is to preserve the information and meaning of the non-missing data. Exactly how are missing values estimated? ˆ Could ignore all other information random or grand mean fill-in ˆ Can use external info not used in response model (e.g., zip code for income) ˆ Needto utilize reason for non-response if possible ˆ Use statistical model with sometimes-missing X as response variable ˆ Model to estimate the missing values should include all variables that are either 1. related to the missing data mechanism; 2. have distributions that differ between subjects that have the target variable missing and those that have it measured;

4 CHAPTER 3. MISSING DATA associated with the sometimes-missing variable when it is not missing; or 4. included in the final response model 6, 59 ˆ Ignoring imputation results in biased ˆV ( ˆβ) ˆtranscan function in Hmisc library: optimal transformations of all variables to make residuals more stable and to allow non-monotonic transformations ˆaregImpute function in Hmisc: good approximation to full Bayesian multiple imputation procedure using the bootstrap ˆaregImpute andtranscan work withfit.mult.impute to make final analysis of response variable relatively easy ˆ Predictive mean matching 82 : replace missing value with observed value of subject having closest predicted value to the predicted value of the subject with the NA PMM can result in some donor observations being used repeatedly CHAPTER 3. MISSING DATA 61 Causes lumpy distribution of imputed values Address by sampling from multinomial distribution, probabilities = scaled distance of all predicted values to predicted value (y ) of observation needing imputing Tukey s tricube function is a good weighting function (used in loess): wi = (1 min(di/s, 1) 3 ) 3, di = ŷi y s = 0.2 mean ŷi y is a good default scale factor scale so that wi = 1 ˆ Recursive partitioning withsurrogatesplits handles case where a predictor of a variable needing imputation is missing itself 3.6 Single Conditional Mean Imputation ˆ Can fill-in using unconditional mean or median if number of missings low and X is unrelated to other Xs

5 CHAPTER 3. MISSING DATA 62 ˆ Otherwise, first approximation to good imputation uses other Xs to predict a missing X ˆ This is a single best guess conditional mean ˆ ˆXj = Z ˆθ, Z = X j Cannot include Y in Z without adding random errors to imputed values (would steal info from Y ) ˆ Recursive partitioning is very helpful for nonparametrically estimating conditional means 3.7 Multiple Imputation ˆ Single imputation using a random draw from the conditional distribution for an individual ˆXj = Z ˆθ + ˆǫ, Z = [X j, Y ] ˆǫ = n(0, ˆσ) or a random draw from the calculated residuals bootstrap approximate Bayesian bootstrap 59, 100 : sample with replacement from sample with replacement of residuals CHAPTER 3. MISSING DATA 63 ˆ Multiple imputations (M) with random draws Draw sample of M residuals for each missing value to be imputed Average M ˆβ In general can provide least biased estimates of β Simple formula for imputation-corrected var( ˆβ) Function of average apparent variances and between-imputation variances of ˆβ BUT full multiple imputation needs to account for uncertainty in the imputation models by refitting these models for each of the M draws transcan does not do that; aregimpute does ˆ Note that multiple imputation can and should use the response variable for imputing predictors 87 ; if should also use auxiliary variables not intended to be in the response model ˆaregImpute algorithm 87 Takes all aspects of uncertainty into account using the bootstrap

6 CHAPTER 3. MISSING DATA 64 Different bootstrap resamples used for each imputation by fitting a flexible additive model on a sample with replacement from the original data This model is used to predict all of the original missing and non-missing values for the target variable for the current imputation Uses flexible parametric additive regression models to impute There is an option to allow target variables to be optimally transformed, even non-monotonically (but this can overfit) Uses predictive mean matching for imputation; no residuals required By default uses weighted PMM; option for just using closest match When a predictor of the target variable is missing, it is first imputed from its last imputation when it was a target variable First 3 iterations of process are ignored ( burnin ) Compares favorably to S MICE approach CHAPTER 3. MISSING DATA 65 Example: a aregimpute( age + sex + bp + death, data=mydata, n.impute=5) f fit.mult.impute(death rcs(age,3) + sex + rcs(bp,5), lrm, a, data=mydata) See Barzi and Woodward 6 for a nice review of multiple imputation with detailed comparison of results (point estimates and confidence limits for the effect of the sometimes-missing predictor) for various imputation methods. Barnes et al. 5 have a good overview of imputation methods and a comparison of bias and confidence interval coverage for the methods when applied to longitudinal data with a small number of subjects. Horton and Kleinman 68 have a good review of several software packages for dealing withmissing data, and a comparison of them with aregimpute. Harel and Zhou 59 provide a nice overview of multiple imputation and discuss some of the available software. Caution: Methodscangenerate imputations having very reasonable distributions but still not having the property that final response model regression coeffi-

7 CHAPTER 3. MISSING DATA 66 cients have nominal confidence interval coverage. At present, regression imputation in aregimpute has excellent coverage but predictive mean matching yields confidence intervals that are a bit too narrow. e ˆ WithMICE andaregimpute we are using the chained equation approach ˆ Chained equations handles a wide varietyof target variables to be imputed and allows for multiple variables to be missing on the same subject ˆ Iterative process cycles through all target variables to impute all missing values 118 ˆ Does not attempt to use the full Bayesian multivariate model for all target variables, making it more flexible and easy to use ˆ Possible to create improper imputations, e.g., imputing conflicting values for different target variables ˆ However, simulation studies 118 demonstrate very good performance of imputation based on chained e One area for future research is to check that imputations have the correct collinearities with other covariates. CHAPTER 3. MISSING DATA 67 equations 3.8 Diagnostics ˆ MCAR can be partially assessed by comparing distribution of non-missing Y for those subjects with complete X vs. those subjects having incomplete X 82 ˆ Yucel and Zaslavsky 138 ˆ Interested in reasonableness of imputed values for a sometimes-missing predictor Xj ˆ Duplicate entire dataset ˆ In the duplicated observations set all non-missing values of Xj to missing; let w denote this set of observations set to missing ˆ Develop imputed values for the missing values of Xj ˆ In the observations in w compare the distribution of imputed Xj to the original values of Xj

8 CHAPTER 3. MISSING DATA Summary and Rough Guidelines Table 3.1: Summary of Methods for Dealing with Missing Values Method Deletion Single Multiple Allows non-random missing x x Reduces sample size x Apparent S.E. of ˆβ too low x Increases real S.E. of ˆβ x ˆβ biased if not MCAR x The following contains very crude guidelines. Simulation studies are needed to refine the recommendations. Here proportion refers to the proportion of observations having any variables missing. Proportion of missings 0.05 : Method of imputing and computing variances doesn t matter much Proportion of missings : Constant fill-in if predictor unrelated to other Xs. Single best guess imputation probably OK. Multiple imputation doesn t hurt. Proportion of missings > 0.15 : Multiple imputation, adjust variances for imputation Multiple predictors frequently missing More CHAPTER 3. MISSING DATA 69 important to do multiple imputation and also to be cautious that imputation might be ineffective. Reasonfor missings more important thannumber of missing values.

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

Multiple imputation using chained equations: Issues and guidance for practice

Multiple imputation using chained equations: Issues and guidance for practice Multiple imputation using chained equations: Issues and guidance for practice Ian R. White, Patrick Royston and Angela M. Wood http://onlinelibrary.wiley.com/doi/10.1002/sim.4067/full By Gabrielle Simoneau

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation NINA ORWITZ OCTOBER 30 TH, 2017 Outline Types of missing data Simple methods for dealing with missing data Single and multiple imputation R example Missing data is a complex

More information

Missing Data: What Are You Missing?

Missing Data: What Are You Missing? Missing Data: What Are You Missing? Craig D. Newgard, MD, MPH Jason S. Haukoos, MD, MS Roger J. Lewis, MD, PhD Society for Academic Emergency Medicine Annual Meeting San Francisco, CA May 006 INTRODUCTION

More information

Missing Data Missing Data Methods in ML Multiple Imputation

Missing Data Missing Data Methods in ML Multiple Imputation Missing Data Missing Data Methods in ML Multiple Imputation PRE 905: Multivariate Analysis Lecture 11: April 22, 2014 PRE 905: Lecture 11 Missing Data Methods Today s Lecture The basics of missing data:

More information

Handling Data with Three Types of Missing Values:

Handling Data with Three Types of Missing Values: Handling Data with Three Types of Missing Values: A Simulation Study Jennifer Boyko Advisor: Ofer Harel Department of Statistics University of Connecticut Storrs, CT May 21, 2013 Jennifer Boyko Handling

More information

Missing Data. Where did it go?

Missing Data. Where did it go? Missing Data Where did it go? 1 Learning Objectives High-level discussion of some techniques Identify type of missingness Single vs Multiple Imputation My favourite technique 2 Problem Uh data are missing

More information

Lecture 26: Missing data

Lecture 26: Missing data Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, 2017 1 / 10 Missing data is everywhere Survey data: nonresponse. 2 / 10 Missing data is everywhere Survey data:

More information

Multiple Imputation for Missing Data. Benjamin Cooper, MPH Public Health Data & Training Center Institute for Public Health

Multiple Imputation for Missing Data. Benjamin Cooper, MPH Public Health Data & Training Center Institute for Public Health Multiple Imputation for Missing Data Benjamin Cooper, MPH Public Health Data & Training Center Institute for Public Health Outline Missing data mechanisms What is Multiple Imputation? Software Options

More information

Missing Data Analysis with SPSS

Missing Data Analysis with SPSS Missing Data Analysis with SPSS Meng-Ting Lo (lo.194@osu.edu) Department of Educational Studies Quantitative Research, Evaluation and Measurement Program (QREM) Research Methodology Center (RMC) Outline

More information

arxiv: v1 [stat.me] 29 May 2015

arxiv: v1 [stat.me] 29 May 2015 MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis Vincent Audigier 1, François Husson 2 and Julie Josse 2 arxiv:1505.08116v1 [stat.me] 29 May 2015 Applied Mathematics

More information

Cross-validation and the Bootstrap

Cross-validation and the Bootstrap Cross-validation and the Bootstrap In the section we discuss two resampling methods: cross-validation and the bootstrap. 1/44 Cross-validation and the Bootstrap In the section we discuss two resampling

More information

CHAPTER 11 EXAMPLES: MISSING DATA MODELING AND BAYESIAN ANALYSIS

CHAPTER 11 EXAMPLES: MISSING DATA MODELING AND BAYESIAN ANALYSIS Examples: Missing Data Modeling And Bayesian Analysis CHAPTER 11 EXAMPLES: MISSING DATA MODELING AND BAYESIAN ANALYSIS Mplus provides estimation of models with missing data using both frequentist and Bayesian

More information

Epidemiological analysis PhD-course in epidemiology

Epidemiological analysis PhD-course in epidemiology Epidemiological analysis PhD-course in epidemiology Lau Caspar Thygesen Associate professor, PhD 9. oktober 2012 Multivariate tables Agenda today Age standardization Missing data 1 2 3 4 Age standardization

More information

Faculty of Sciences. Holger Cevallos Valdiviezo

Faculty of Sciences. Holger Cevallos Valdiviezo Faculty of Sciences Handling of missing data in the predictor variables when using Tree-based techniques for training and generating predictions Holger Cevallos Valdiviezo Master dissertation submitted

More information

Epidemiological analysis PhD-course in epidemiology. Lau Caspar Thygesen Associate professor, PhD 25 th February 2014

Epidemiological analysis PhD-course in epidemiology. Lau Caspar Thygesen Associate professor, PhD 25 th February 2014 Epidemiological analysis PhD-course in epidemiology Lau Caspar Thygesen Associate professor, PhD 25 th February 2014 Age standardization Incidence and prevalence are strongly agedependent Risks rising

More information

Missing Data. SPIDA 2012 Part 6 Mixed Models with R:

Missing Data. SPIDA 2012 Part 6 Mixed Models with R: The best solution to the missing data problem is not to have any. Stef van Buuren, developer of mice SPIDA 2012 Part 6 Mixed Models with R: Missing Data Georges Monette 1 May 2012 Email: georges@yorku.ca

More information

COPYRIGHTED MATERIAL CONTENTS

COPYRIGHTED MATERIAL CONTENTS PREFACE ACKNOWLEDGMENTS LIST OF TABLES xi xv xvii 1 INTRODUCTION 1 1.1 Historical Background 1 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods 3 1.2.1 Jackknife 6 1.2.2

More information

Ronald H. Heck 1 EDEP 606 (F2015): Multivariate Methods rev. November 16, 2015 The University of Hawai i at Mānoa

Ronald H. Heck 1 EDEP 606 (F2015): Multivariate Methods rev. November 16, 2015 The University of Hawai i at Mānoa Ronald H. Heck 1 In this handout, we will address a number of issues regarding missing data. It is often the case that the weakest point of a study is the quality of the data that can be brought to bear

More information

Cross-validation and the Bootstrap

Cross-validation and the Bootstrap Cross-validation and the Bootstrap In the section we discuss two resampling methods: cross-validation and the bootstrap. These methods refit a model of interest to samples formed from the training set,

More information

Amelia multiple imputation in R

Amelia multiple imputation in R Amelia multiple imputation in R January 2018 Boriana Pratt, Princeton University 1 Missing Data Missing data can be defined by the mechanism that leads to missingness. Three main types of missing data

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION Introduction CHAPTER 1 INTRODUCTION Mplus is a statistical modeling program that provides researchers with a flexible tool to analyze their data. Mplus offers researchers a wide choice of models, estimators,

More information

Lecture 1: Statistical Reasoning 2. Lecture 1. Simple Regression, An Overview, and Simple Linear Regression

Lecture 1: Statistical Reasoning 2. Lecture 1. Simple Regression, An Overview, and Simple Linear Regression Lecture Simple Regression, An Overview, and Simple Linear Regression Learning Objectives In this set of lectures we will develop a framework for simple linear, logistic, and Cox Proportional Hazards Regression

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU.

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU. SOS3003 Applied data analysis for social science Lecture note 04-2009 Erling Berge Department of sociology and political science NTNU Erling Berge 2009 1 Missing data Literature Allison, Paul D 2002 Missing

More information

Analysis of Imputation Methods for Missing Data. in AR(1) Longitudinal Dataset

Analysis of Imputation Methods for Missing Data. in AR(1) Longitudinal Dataset Int. Journal of Math. Analysis, Vol. 5, 2011, no. 45, 2217-2227 Analysis of Imputation Methods for Missing Data in AR(1) Longitudinal Dataset Michikazu Nakai Innovation Center for Medical Redox Navigation,

More information

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES UNIVERSITY OF GLASGOW MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES by KHUNESWARI GOPAL PILLAY A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in

More information

MISSING DATA AND MULTIPLE IMPUTATION

MISSING DATA AND MULTIPLE IMPUTATION Paper 21-2010 An Introduction to Multiple Imputation of Complex Sample Data using SAS v9.2 Patricia A. Berglund, Institute For Social Research-University of Michigan, Ann Arbor, Michigan ABSTRACT This

More information

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Topics Validation of biomedical models Data-splitting Resampling Cross-validation

More information

Multiple-imputation analysis using Stata s mi command

Multiple-imputation analysis using Stata s mi command Multiple-imputation analysis using Stata s mi command Yulia Marchenko Senior Statistician StataCorp LP 2009 UK Stata Users Group Meeting Yulia Marchenko (StataCorp) Multiple-imputation analysis using mi

More information

Package CALIBERrfimpute

Package CALIBERrfimpute Type Package Package CALIBERrfimpute June 11, 2018 Title Multiple Imputation Using MICE and Random Forest Version 1.0-1 Date 2018-06-05 Functions to impute using Random Forest under Full Conditional Specifications

More information

R software and examples

R software and examples Handling Missing Data in R with MICE Handling Missing Data in R with MICE Why this course? Handling Missing Data in R with MICE Stef van Buuren, Methodology and Statistics, FSBS, Utrecht University Netherlands

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 13: The bootstrap (v3) Ramesh Johari ramesh.johari@stanford.edu 1 / 30 Resampling 2 / 30 Sampling distribution of a statistic For this lecture: There is a population model

More information

Missing data analysis. University College London, 2015

Missing data analysis. University College London, 2015 Missing data analysis University College London, 2015 Contents 1. Introduction 2. Missing-data mechanisms 3. Missing-data methods that discard data 4. Simple approaches that retain all the data 5. RIBG

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Missing Data Techniques

Missing Data Techniques Missing Data Techniques Paul Philippe Pare Department of Sociology, UWO Centre for Population, Aging, and Health, UWO London Criminometrics (www.crimino.biz) 1 Introduction Missing data is a common problem

More information

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Examples: Mixture Modeling With Cross-Sectional Data CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Mixture modeling refers to modeling with categorical latent variables that represent

More information

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

Statistical matching: conditional. independence assumption and auxiliary information

Statistical matching: conditional. independence assumption and auxiliary information Statistical matching: conditional Training Course Record Linkage and Statistical Matching Mauro Scanu Istat scanu [at] istat.it independence assumption and auxiliary information Outline The conditional

More information

Machine Learning: An Applied Econometric Approach Online Appendix

Machine Learning: An Applied Econometric Approach Online Appendix Machine Learning: An Applied Econometric Approach Online Appendix Sendhil Mullainathan mullain@fas.harvard.edu Jann Spiess jspiess@fas.harvard.edu April 2017 A How We Predict In this section, we detail

More information

WELCOME! Lecture 3 Thommy Perlinger

WELCOME! Lecture 3 Thommy Perlinger Quantitative Methods II WELCOME! Lecture 3 Thommy Perlinger Program Lecture 3 Cleaning and transforming data Graphical examination of the data Missing Values Graphical examination of the data It is important

More information

Handling missing data for indicators, Susanne Rässler 1

Handling missing data for indicators, Susanne Rässler 1 Handling Missing Data for Indicators Susanne Rässler Institute for Employment Research & Federal Employment Agency Nürnberg, Germany First Workshop on Indicators in the Knowledge Economy, Tübingen, 3-4

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

RESAMPLING METHODS. Chapter 05

RESAMPLING METHODS. Chapter 05 1 RESAMPLING METHODS Chapter 05 2 Outline Cross Validation The Validation Set Approach Leave-One-Out Cross Validation K-fold Cross Validation Bias-Variance Trade-off for k-fold Cross Validation Cross Validation

More information

Motivating Example. Missing Data Theory. An Introduction to Multiple Imputation and its Application. Background

Motivating Example. Missing Data Theory. An Introduction to Multiple Imputation and its Application. Background An Introduction to Multiple Imputation and its Application Craig K. Enders University of California - Los Angeles Department of Psychology cenders@psych.ucla.edu Background Work supported by Institute

More information

Analysis of Incomplete Multivariate Data

Analysis of Incomplete Multivariate Data Analysis of Incomplete Multivariate Data J. L. Schafer Department of Statistics The Pennsylvania State University USA CHAPMAN & HALL/CRC A CR.C Press Company Boca Raton London New York Washington, D.C.

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

Multiple Imputation with Mplus

Multiple Imputation with Mplus Multiple Imputation with Mplus Tihomir Asparouhov and Bengt Muthén Version 2 September 29, 2010 1 1 Introduction Conducting multiple imputation (MI) can sometimes be quite intricate. In this note we provide

More information

Lecture 20: Bagging, Random Forests, Boosting

Lecture 20: Bagging, Random Forests, Boosting Lecture 20: Bagging, Random Forests, Boosting Reading: Chapter 8 STATS 202: Data mining and analysis November 13, 2017 1 / 17 Classification and Regression trees, in a nut shell Grow the tree by recursively

More information

Missing data a data value that should have been recorded, but for some reason, was not. Simon Day: Dictionary for clinical trials, Wiley, 1999.

Missing data a data value that should have been recorded, but for some reason, was not. Simon Day: Dictionary for clinical trials, Wiley, 1999. 2 Schafer, J. L., Graham, J. W.: (2002). Missing Data: Our View of the State of the Art. Psychological methods, 2002, Vol 7, No 2, 47 77 Rosner, B. (2005) Fundamentals of Biostatistics, 6th ed, Wiley.

More information

SPSS QM II. SPSS Manual Quantitative methods II (7.5hp) SHORT INSTRUCTIONS BE CAREFUL

SPSS QM II. SPSS Manual Quantitative methods II (7.5hp) SHORT INSTRUCTIONS BE CAREFUL SPSS QM II SHORT INSTRUCTIONS This presentation contains only relatively short instructions on how to perform some statistical analyses in SPSS. Details around a certain function/analysis method not covered

More information

A STOCHASTIC METHOD FOR ESTIMATING IMPUTATION ACCURACY

A STOCHASTIC METHOD FOR ESTIMATING IMPUTATION ACCURACY A STOCHASTIC METHOD FOR ESTIMATING IMPUTATION ACCURACY Norman Solomon School of Computing and Technology University of Sunderland A thesis submitted in partial fulfilment of the requirements of the University

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Regression Analysis and Linear Regression Models

Regression Analysis and Linear Regression Models Regression Analysis and Linear Regression Models University of Trento - FBK 2 March, 2015 (UNITN-FBK) Regression Analysis and Linear Regression Models 2 March, 2015 1 / 33 Relationship between numerical

More information

Types of missingness and common strategies

Types of missingness and common strategies 9 th UK Stata Users Meeting 20 May 2003 Multiple imputation for missing data in life course studies Bianca De Stavola and Valerie McCormack (London School of Hygiene and Tropical Medicine) Motivating example

More information

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data Special Topic: Missing Values Missing Values Common in Real Data Pneumonia: 6.3% of attribute values are missing one attribute is missing in 61% of cases C-Section: only about 1/2% of attribute values

More information

Bootstrap and multiple imputation under missing data in AR(1) models

Bootstrap and multiple imputation under missing data in AR(1) models EUROPEAN ACADEMIC RESEARCH Vol. VI, Issue 7/ October 2018 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+) Bootstrap and multiple imputation under missing ELJONA MILO

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model Topic 16 - Other Remedies Ridge Regression Robust Regression Regression Trees Outline - Fall 2013 Piecewise Linear Model Bootstrapping Topic 16 2 Ridge Regression Modification of least squares that addresses

More information

SENSITIVITY ANALYSIS IN HANDLING DISCRETE DATA MISSING AT RANDOM IN HIERARCHICAL LINEAR MODELS VIA MULTIVARIATE NORMALITY

SENSITIVITY ANALYSIS IN HANDLING DISCRETE DATA MISSING AT RANDOM IN HIERARCHICAL LINEAR MODELS VIA MULTIVARIATE NORMALITY Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 6 SENSITIVITY ANALYSIS IN HANDLING DISCRETE DATA MISSING AT RANDOM IN HIERARCHICAL LINEAR MODELS VIA MULTIVARIATE

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Random Forest A. Fornaser

Random Forest A. Fornaser Random Forest A. Fornaser alberto.fornaser@unitn.it Sources Lecture 15: decision trees, information theory and random forests, Dr. Richard E. Turner Trees and Random Forests, Adele Cutler, Utah State University

More information

Generalized least squares (GLS) estimates of the level-2 coefficients,

Generalized least squares (GLS) estimates of the level-2 coefficients, Contents 1 Conceptual and Statistical Background for Two-Level Models...7 1.1 The general two-level model... 7 1.1.1 Level-1 model... 8 1.1.2 Level-2 model... 8 1.2 Parameter estimation... 9 1.3 Empirical

More information

Advanced and Predictive Analytics with JMP 12 PRO. JMP User Meeting 9. Juni Schwalbach

Advanced and Predictive Analytics with JMP 12 PRO. JMP User Meeting 9. Juni Schwalbach Advanced and Predictive Analytics with JMP 12 PRO JMP User Meeting 9. Juni 2016 -Schwalbach Definition Predictive Analytics encompasses a variety of statistical techniques from modeling, machine learning

More information

StatCalc User Manual. Version 9 for Mac and Windows. Copyright 2018, AcaStat Software. All rights Reserved.

StatCalc User Manual. Version 9 for Mac and Windows. Copyright 2018, AcaStat Software. All rights Reserved. StatCalc User Manual Version 9 for Mac and Windows Copyright 2018, AcaStat Software. All rights Reserved. http://www.acastat.com Table of Contents Introduction... 4 Getting Help... 4 Uninstalling StatCalc...

More information

Missing Data? A Look at Two Imputation Methods Anita Rocha, Center for Studies in Demography and Ecology University of Washington, Seattle, WA

Missing Data? A Look at Two Imputation Methods Anita Rocha, Center for Studies in Demography and Ecology University of Washington, Seattle, WA Missing Data? A Look at Two Imputation Methods Anita Rocha, Center for Studies in Demography and Ecology University of Washington, Seattle, WA ABSTRACT Statistical analyses can be greatly hampered by missing

More information

Chapters 5-6: Statistical Inference Methods

Chapters 5-6: Statistical Inference Methods Chapters 5-6: Statistical Inference Methods Chapter 5: Estimation (of population parameters) Ex. Based on GSS data, we re 95% confident that the population mean of the variable LONELY (no. of days in past

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation Hoff Chapter 7, GH Chapter 25 April 21, 2017 Bednets and Malaria Y:presence or absence of parasites in a blood smear AGE: age of child BEDNET: bed net use (exposure) GREEN:greenness

More information

HANDLING MISSING DATA

HANDLING MISSING DATA GSO international workshop Mathematic, biostatistics and epidemiology of cancer Modeling and simulation of clinical trials Gregory GUERNEC 1, Valerie GARES 1,2 1 UMR1027 INSERM UNIVERSITY OF TOULOUSE III

More information

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes.

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes. Resources for statistical assistance Quantitative covariates and regression analysis Carolyn Taylor Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC January 24, 2017 Department

More information

Group Level Imputation of Statistic Maps, Version 1.0. User Manual by Kenny Vaden, Ph.D. musc. edu)

Group Level Imputation of Statistic Maps, Version 1.0. User Manual by Kenny Vaden, Ph.D. musc. edu) Updated: March 29, 2012 1 Group Level Imputation of Statistic Maps, Version 1.0 User Manual by Kenny Vaden, Ph.D. (vaden @ musc. edu) Notice for use in Academic Work: If our toolkit is used in an academic

More information

Section 2.3: Simple Linear Regression: Predictions and Inference

Section 2.3: Simple Linear Regression: Predictions and Inference Section 2.3: Simple Linear Regression: Predictions and Inference Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.4 1 Simple

More information

Dimensionality Reduction, including by Feature Selection.

Dimensionality Reduction, including by Feature Selection. Dimensionality Reduction, including by Feature Selection www.cs.wisc.edu/~dpage/cs760 Goals for the lecture you should understand the following concepts filtering-based feature selection information gain

More information

An imputation approach for analyzing mixed-mode surveys

An imputation approach for analyzing mixed-mode surveys An imputation approach for analyzing mixed-mode surveys Jae-kwang Kim 1 Iowa State University June 4, 2013 1 Joint work with S. Park and S. Kim Ouline Introduction Proposed Methodology Application to Private

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Week 11: Interpretation plus

Week 11: Interpretation plus Week 11: Interpretation plus Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ARR 1 Outline A bit of a patchwork

More information

Opening Windows into the Black Box

Opening Windows into the Black Box Opening Windows into the Black Box Yu-Sung Su, Andrew Gelman, Jennifer Hill and Masanao Yajima Columbia University, Columbia University, New York University and University of California at Los Angels July

More information

Applied Statistics and Econometrics Lecture 6

Applied Statistics and Econometrics Lecture 6 Applied Statistics and Econometrics Lecture 6 Giuseppe Ragusa Luiss University gragusa@luiss.it http://gragusa.org/ March 6, 2017 Luiss University Empirical application. Data Italian Labour Force Survey,

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

Simulation Study: Introduction of Imputation. Methods for Missing Data in Longitudinal Analysis

Simulation Study: Introduction of Imputation. Methods for Missing Data in Longitudinal Analysis Applied Mathematical Sciences, Vol. 5, 2011, no. 57, 2807-2818 Simulation Study: Introduction of Imputation Methods for Missing Data in Longitudinal Analysis Michikazu Nakai Innovation Center for Medical

More information

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2)

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2) SOC6078 Advanced Statistics: 9. Generalized Additive Models Robert Andersen Department of Sociology University of Toronto Goals of the Lecture Introduce Additive Models Explain how they extend from simple

More information

Applied Regression Modeling: A Business Approach

Applied Regression Modeling: A Business Approach i Applied Regression Modeling: A Business Approach Computer software help: SAS SAS (originally Statistical Analysis Software ) is a commercial statistical software package based on a powerful programming

More information

Multicollinearity and Validation CIVL 7012/8012

Multicollinearity and Validation CIVL 7012/8012 Multicollinearity and Validation CIVL 7012/8012 2 In Today s Class Recap Multicollinearity Model Validation MULTICOLLINEARITY 1. Perfect Multicollinearity 2. Consequences of Perfect Multicollinearity 3.

More information

ESTIMATING THE MISSING VALUES IN ANALYSIS OF VARIANCE TABLES BY A FLEXIBLE ADAPTIVE ARTIFICIAL NEURAL NETWORK AND FUZZY REGRESSION MODELS

ESTIMATING THE MISSING VALUES IN ANALYSIS OF VARIANCE TABLES BY A FLEXIBLE ADAPTIVE ARTIFICIAL NEURAL NETWORK AND FUZZY REGRESSION MODELS ESTIMATING THE MISSING VALUES IN ANALYSIS OF VARIANCE TABLES BY A FLEXIBLE ADAPTIVE ARTIFICIAL NEURAL NETWORK AND FUZZY REGRESSION MODELS Ali Azadeh - Zahra Saberi Hamidreza Behrouznia-Farzad Radmehr Peiman

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Rebecca C. Steorts, Duke University STA 325, Chapter 3 ISL 1 / 49 Agenda How to extend beyond a SLR Multiple Linear Regression (MLR) Relationship Between the Response and Predictors

More information

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Introduction Neural networks are flexible nonlinear models that can be used for regression and classification

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 9. Linear regression with latent variables 9.1 Principal component regression (PCR) 9.2 Partial least-squares regression (PLS) [ mostly

More information

Example Using Missing Data 1

Example Using Missing Data 1 Ronald H. Heck and Lynn N. Tabata 1 Example Using Missing Data 1 Creating the Missing Data Variable (Miss) Here is a data set (achieve subset MANOVAmiss.sav) with the actual missing data on the outcomes.

More information

Comparison of Methods for Analyzing and Interpreting Censored Exposure Data

Comparison of Methods for Analyzing and Interpreting Censored Exposure Data Comparison of Methods for Analyzing and Interpreting Censored Exposure Data Paul Hewett Ph.D. CIH Exposure Assessment Solutions, Inc. Gary H. Ganser Ph.D. West Virginia University Comparison of Methods

More information

Missing data analysis: - A study of complete case analysis, single imputation and multiple imputation. Filip Lindhfors and Farhana Morko

Missing data analysis: - A study of complete case analysis, single imputation and multiple imputation. Filip Lindhfors and Farhana Morko Bachelor thesis Department of Statistics Kandidatuppsats, Statistiska institutionen Nr 2014:5 Missing data analysis: - A study of complete case analysis, single imputation and multiple imputation Filip

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Simulation of Imputation Effects Under Different Assumptions. Danny Rithy

Simulation of Imputation Effects Under Different Assumptions. Danny Rithy Simulation of Imputation Effects Under Different Assumptions Danny Rithy ABSTRACT Missing data is something that we cannot always prevent. Data can be missing due to subjects' refusing to answer a sensitive

More information

Synthetic Data. Michael Lin

Synthetic Data. Michael Lin Synthetic Data Michael Lin 1 Overview The data privacy problem Imputation Synthetic data Analysis 2 Data Privacy As a data provider, how can we release data containing private information without disclosing

More information

2014 Stat-Ease, Inc. All Rights Reserved.

2014 Stat-Ease, Inc. All Rights Reserved. What s New in Design-Expert version 9 Factorial split plots (Two-Level, Multilevel, Optimal) Definitive Screening and Single Factor designs Journal Feature Design layout Graph Columns Design Evaluation

More information

Performance of Sequential Imputation Method in Multilevel Applications

Performance of Sequential Imputation Method in Multilevel Applications Section on Survey Research Methods JSM 9 Performance of Sequential Imputation Method in Multilevel Applications Enxu Zhao, Recai M. Yucel New York State Department of Health, 8 N. Pearl St., Albany, NY

More information

An Algorithm for Creating Models for Imputation Using the MICE Approach:

An Algorithm for Creating Models for Imputation Using the MICE Approach: An Algorithm for Creating Models for Imputation Using the MICE Approach: An application in Stata Rose Anne rosem@ats.ucla.edu Statistical Consulting Group Academic Technology Services University of California,

More information

Comparison of Hot Deck and Multiple Imputation Methods Using Simulations for HCSDB Data

Comparison of Hot Deck and Multiple Imputation Methods Using Simulations for HCSDB Data Comparison of Hot Deck and Multiple Imputation Methods Using Simulations for HCSDB Data Donsig Jang, Amang Sukasih, Xiaojing Lin Mathematica Policy Research, Inc. Thomas V. Williams TRICARE Management

More information